
More than a Buzzword: Extending More than a Buzzword: Extending
the Reach of Your MQ Messaging the Reach of Your MQ Messaging
with Web 2.0with Web 2.0

Simon Gormley (Simon Gormley (sgormley@uk.ibm.comsgormley@uk.ibm.com))
IBM Hursley ParkIBM Hursley Park

August 10August 10th,th, 2011 2011
Session 9360Session 9360

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com

Introduction: Extending the Reach of Applications
Using WMQ

• New distributed programming models have become widely
adopted

• SOA Web services
• Promises greater re-use and interoperability through standards e.g. WS-*
• Mixed environments: platforms, qualities of service and communications

transports.

• Programmable web
• Ad-hoc web services – simple, lightweight, pragmatic e.g. REST

• IBM is extending WMQ to take advantage of these new models…

• Goals:

• Easy access to WMQ from HTTP and the World Wide Web
• To make WMQ easier to use in Service Oriented Architectures

and web services

Extending the Reach of Applications Using MQ
• Recent years have seen a growth of interest and adoption of distributed programming styles, led

primarily by the success of standards based Web services. The success of Web services standards
based on SOAP (WS-*) has been based on the promise of greatly improved code re-use and
component interoperability through the development of composite applications, built from services;
using a variety of qualities of service; and accessible over a range of communication transports.

• The success of Web services has been dramatic, but they are not seen as the best solution to all
problems. The specifications are geared towards recreating many of the traditional Enterprise
qualities of service (transactionality etc) over interoperable XML protocols. This makes the
specifications complicated, and the XML-based protocols are relatively heavyweight. Web services
implementations rely heavily on tools to hide this complexity which pushes up the cost-of-entry in
terms of skills and software product requirements.

• For simpler scenarios, a section of the software development community is advocating more basic
APIS and protocols – typically based on HTTP so that they can be invoked directly from Rich Internet
(Web 2.0) Applications. These APIs are geared towards keeping simple things simple, and so
deliberately steer clear of the complexities of Enterprise qualities of service, leading to a lower cost-of-
entry than SOAP and WS-*,. Many of these APIs follow the REST best practices discussed later in
this presentation, and use plain old XML (POX) or JavaScript Object Notation (JSON) message
formats.

• WebSphere MQ is very relevant in these environments and so is being extended to take advantage of
these new programming models with the goals of providing: Much simpler access from Web and
HTTP clients, so enterprise date can be much more readily accessed and closer integration with
Service Orientated Architectures so applications can be more easily developed, managed and re-used
in this environment.

N

O

T

E

S

WMQ Web Services Themes

2. Robust Async SOAP Transport
• Decouple client and service availability
• Quality of service: more tangible,

traceable and reliable then HTTP.
• Transactionality; Scalability

3. Managing WMQ Apps as Services

• Reduces time and effort to develop Enterprise
apps

• Enables Re-use, Governance etc in SOA
without re-working interfaces

1. Easy Access from the Web

• Enrich Rich Internet Apps with data from
core systems

• Extends reach and ROI of existing
enterprise apps

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

MQ Web Services Themes

• To support these goals, WebSphere MQ is being developed under three main themes:

• The theme supports the first goal of providing easier access from HTTP and the Web. As
mentioned previously, this is all about providing much simpler access to enterprise data
from ‘lightweight’ Web style clients, allowing low QoS “Zero footprint” client applications to
access MQ over HTTP, eliminating the need to deploy MQ client libraries when client
applications are deployed.

• The two remaining themes are in support of the second goal of more closely integrating
WMQ with Service Orientated architectures and web services.

• The second theme is enable the reliable and asynchronous qualities of MQ to be taken
advantage of for carrying SOAP messages between standard web service clients and
services, as an excellent compliment to the HTTP’s less reliable synchronous protocol.

• The third theme is about being able to manage MQ applications as services. Enabling
native MQ applications to be catalogued as a first-class part of an SOA, and consumed in
composite applications, in the same was as any other web service.

• A majoroity of what you’ll be seeing today is fairly newly in the product and all are still
focus areas for development, so any feedback is greatly appreciated.

N

O

T

E

S

MQ Web Services Themes

2. Robust Async SOAP Transport
 SOAP over JMS, IBM & Standard

 WMQ Channel for Windows
Communication Foundation

3. Managing WMQ Apps as Services

 WMQ Service Definitions
• WSDL for WMQ Applications

1. Easy Access from Web Clients
 WebSphere MQ Bridge for HTTP

• Web Client side access to WMQ

 JSP/Servlets & “SAM” PHP API
• Web Server side access to WMQ

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

MQ Web Services Themes

2. Robust Async SOAP Transport

 SOAP / JMS Standard

 WMQ Channel for Windows
Communication Foundation

3. Managing WMQ Apps as Services

 WMQ Service Definitions
• .wsdl for WMQ Applications

1. Easy Access from Web Clients
 WebSphere MQ Bridge for HTTP

• Web Client side access to WMQ

 JSP/Servlets & "SAM" PHP API
• Web Server side access to WMQ

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

Part 1a – Web Client Access
MQ-HTTP Bridge

Allows applications to connect to WMQ over HTTP.
Two main goals:

1. Simplifies access to MQ Apps from browser-based Rich
Internet Applications

• Gives AJAX and Rich Internet applications access to the
Enterprise

• Submit data direct to queues & topics from Browser

2. Non-browser-based “Zero Footprint Client” - Enable MQ
Application Connectivity from any Platform or Language with
HTTP capabilities

• Significantly increase range of supported platforms
• e.g. – Linux distros, POS terminal running Windows Services for Unix environment, RFID

reader, Mobile devices

• Reduce cost of MQ Client deployment and maintenance
• No client library installation required

• Lightweight (low qualities of service) messaging

HTTP-MQ Goals

• Web Browsers provide a near ubiquitous platform for deploying client applications
• HTTP is the pervading transport protocol

• The first goal of the MQ HTTP feature is to extend the reach of MQ applications to
these environments over HTTP

• This will give Rich Internet Applications simplifed access to the Enterprise
• For example

• web-based clients will be able to submit data (e.g. forms)
as MQ messages directly to enterprise batch applications

• Req/resp MQ applications can be fronted with web-based
clients

• Pub sub – data flowing through network
• Another goal is to provide access to MQ from many more environments
• Eliminating the MQ client will reduce the cost of application deployment
• Though of course this is not a complete replacement for the MQ client

• It is missing many MQI features and does not offer
transactionality, assured delivery etc.

• But in many cases where applications have resend logic
and check for duplicates it will be good enough

N

O

T

E

S

Two Implementation Options Available

1. SupportPac MA0Y & WMQ V7.0: HTTP Bridge implemented as a Servlet
• Suitable for deployment to existing J2EE app. servers (WAS, Geronimo, JBoss)
• Back end connectivity uses the WMQ JCA resource adapter and WMQ JMS
• JMS ConnectionFactory configuration determines if MQ connection uses client mode or bindings

2. SupportPac MA94: Standalone HTTP Listener
• Available for Windows, AIX, and Linux
• Client or bindings mode, Security exits

http://mq.com:1415/msg/

queues/myQ

topics/stocks/IBM

libwww

Web
Browsers

Javascript /
AJAX

HTTP
clients

Java

SVRCONN
CHANNEL

Client or
Bindings
Connection

Queue Manager
 MQ HTTP

Bridge

ServletS

MQ
JCA +

JMS

J2EE Application
Server

MA94 Standalone
HTTP listener

(httplistener.exe)

REST style
HTTP:
POST /
 GET /

 DELETE

Architectural Overview

• The functionality is in two SupportPacs – MA0Y which is a servlet
based implementation which can be deployed in any J2EE app
server, or MA94 which is a standalone executable HTTP listener
which runs on Windows, AIX, and Linux.

• Front end connectivity is over HTTP(S) into the Application Server,
or HTTP into the Listener, enabling any HTTP capable device or
scripting language to send and receive messages. This could
include browser based web 2.0 applications using AJAX to
dynamically refresh data, server side applications, or mobile/point
of sale devices.

• For the MA0Y, backend connectivity is supported by using the
WMQ JCA adapter or WMQ JMS, the choice of which depends on
the application server. Either way, the connection mode that’s used
to connect to MQ can be configured using a JMS
ConnectionFactory, both Bindings and clients modes are
supported. Authentication and access control to URI’s must be
configured in the application server.

• MA94 also supports Client or Bindings connections to the queue
manager, is secured by a security exit, and includes some
additional features like a “memory” of messages delivered to
topics

• The HTTP interface is modelled on REST

N

O

T

E

S

REpresentational State Transfer (Roy Fielding)

o Everything is modeled as a Resource

o Every resource is identified by an address (URI)

o Resources have state (representation)

o HTTP is used to transfer state to networked application

o HTTP verbs operate on the resource

 GET  retrieves a resource’s
state representation

 POST  Updates resource
(or other processing)

 DELETE  deletes resource

 PUT  Creates / updates
resource state

Background – HTTP-MQ Loosely Modelled
on REST

Server

Resource

State

HTTP GETState Representation

HTTP POSTState Representation

HTTP PUTState Representation

HTTP DELETE

Background – HTTP-MQ Loosely Modelled on REST

• REST was originally described by Roy Fielding (principle author of HTTP
spec) in his 1999 dissertation.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

• Has been described as the “Architecture of the WEB” – essentially a set of
architectural best practices for highly scalable scalable distributed
applications. HTTP and the Web is the de-facto standard implementation
of REST. It represents a Client-Server Protocol with a uniform interface
across resources (HTTP Methods POST, GET, DELETE, etc). Resources
are identified by URIs, connections are stateless etc.

• So for example, a REST interface for a online catalogue would have a
separate URI for each item in the catalogue. Items could then be added by
using a PUT, removed by using a DELETE and enquired by using a GET.

• REST therefore offers a different integration style to WS-* standards based
web services. Qualities of service are sacrificed for simplicity and
scalability to keep barriers-to-entry low. REST API’s are typically simple
and so don’t require an SOA expert, or heavyweight tools to implement.
They can be used spontaneously and incrementally – for example in Web
2.0 mash-ups.

• “Good Enough” is often Good Enough

N

O

T

E

S

HTTP-MQ API: Verb / Resource Mapping

HTTP verb mapping

Resource Sample URIs GET POST PU
T

DELET
E

Messages
http://host/msg/queue/qname/

http://host/msg/topic/topic_path/
MQGET w.

browse MQPUT - MQGET

• Message header fields (MQMD) are conveyed in HTTP headers

• All HTTP headers prefixed with “x-msg-”

• Message Body is passed in HTTP entity body

• Message type is conveyed in HTTP Content-Type

• HTTP media-types are used :
• “text/plain” or “text/html” equate to MQ string messages (MQFMT_STRING)
• All other media types map to MQ Binary messages (MQFMT_NONE)

• No plan to supply client-side libraries – apps code direct to HTTP

• Defines an IRI to identify the address of the queue (or topic)

• API is a simple mapping of HTTP verbs to the MQI…

HTTP-MQ Verb / Resource Mapping

• The HTTP/MQ API is largely based on REST, though it has some quirks. For
example MQ/HTTP transfers message representations, but messages are not
ideal REST resources

• They do not necessarily have a unique identifier, and so cannot be addressed individually
• Not generally amenable to caching etc. because they must be delivered only once
• They are very transient

• The API defines a URI to address messages on queues and topics
• It is a stateless / connectionless API with one HTTP verb -> one MQ operation

• HTTP headers = Message headers
• request headers (get and put options) – wait, requires-headers
• entity headers (MQMD options) – priority, expiry, timestamp, persistence, msgId, correlId,

replyTo, encoding

• HTTP request payload = Message body
• Message Body

• Passed as the HTTP entity body - can be text or binary
• The MQ message type is conveyed in the HTTP Content-Type header

• We don’t supply client libraries – applications code directly to HTTP verbs
• The API is not finalised !!! - e.g. some firewalls may block DELETE and extended HTTP headers, so In

the future we may allow other resource types in the URI
• For instance ‘status’ resources to allow Queries on the status of MQ channels, ‘admin’

resources to allow administration alternatives may be required (possibly passing additional data as IRI
query parameters)

N

O

T

E

S

Deconstructed HTTP Flow - POST (= MQPUT)

Request:
POST /msg/queue/requestQ/ HTTP/1.1
Host: www.mqhttpsample.com
Content-Type: text/plain
Content-Length: 60
x-msg-replyTo: /msg/queue/replyQ/
x-msg-require-headers: msgID, priority, timestamp
Message body which will appear on the queue as an MQSTR

Response:
HTTP/1.1 200 OK
x-msg-msgID: 1234567890
x-msg-timestamp: Thu, 22 Mar 2007 08:49:37 GMT
x-msg-priority: 4

Put to destination

Type and length of
message (60 char string)

Headers to
include on reply

Message Data
Response code

Required Headers
returned

reply Queue

Deconstructed HTTP Flow - POST (= MQPUT)
The previous slide shows the HTTP flow on the wire for putting an MQ request message to a

queue.

Request
• The first line is the request line which identifies the HTTP verb (i.e. POST - mapped to an

MQPUT)
• The request line is followed by the HTTP headers are passed as colon separated name-

value pairs
• The Content-Type header = text/plain tells the MQ HTTP gateway to put the message to

the queue using MQMD.Format = MQFMT_STRING.
• The Content-Length header tells the MQ HTTP gateway that the message is 60 bytes long
• “x-msg-replyTo” is an extension header which specifies the reply queue and queue

manager to go in the MQMD.ReplyToQ and ReplyToQmgr fields
• “x-msg-requiresHeaders” is an extension header which specifies the header fields which

the MQ HTTP header should return in the HTTP response.
• The HTTP headers are followed by the HTTP entity body which contains the message data

Response
• The response to a POST shows whether the message was put successfully to the queue or

not.
• The first line of the HTTP response is the status line – which includes the response code

(in this case it is 200 - “OK”)
• The headers which follow the status line are the headers requested by “x-msg-

requiresHeaders” i.e. msgID, priority, and timestamp

N

O

T

E

S

Deconstructed HTTP Flow - DELETE (=MQGET)

Request:

DELETE /msg/queue/replyQ/ HTTP/1.1

Host: www.mqhttpsample.com

x-msg-wait: 10

x-msg-correlID: 1234567890

x-msg-require-headers: correlID

Response:

HTTP/1.1 200 OK

Content-Length: 60

Content-Type: text/plain

x-msg-correlID: 1234567890

Response message body which will appear on the queue as an MQSTR

Get from destination

Get wait time (ms)

Headers to
include on reply

Response code

Message length

Message data type

Retrieved Message
Data

Retrieved Message

Correlation ID

Get using this correlID

<head>
<script language="javascript">
 function doPOST() {
 xmlDoc = new XMLHttpRequest();
 xmlDoc.onreadystatechange = processPOSTResponse;
 xmlDoc.open("POST", "http://localhost:50667/msg/queue/myQueue/", true);
 xmlDoc.setRequestHeader("Content-Length", 11);
 xmlDoc.setRequestHeader(" x-msg-requiresHeaders ", “msgID, timestamp “);
 xmlDoc.send("Hello World");
 }

 function processPOSTResponse() {
 if (xmlDoc.readyState == 4) {
 if (xmlDoc.status == 200) {
 window.status = "POST succeeded";
 } else {
 window.status = "POST failed: " + xmlDoc.status;
 }
 }
</script>
</head>
<body onload="doPOST() " >
 This page sent a message when it was loaded.
</body>

JavaScript XHR Example: Web Page to put a
message

Java Example: Method to PUT a message over
HTTP

public void doPOST() {
try {

// Set URI to point to queue
URL postURL = new URL("http://localhost/msg/queue/myQueue/");

// Open HTTP connection to URI
HttpURLConnection connection =

 (HttpURLConnection)postURL.openConnection();
connection.setRequestMethod("POST"); // Set HTTP method
connection.setDoOutput(true);

// Send message
PrintWriter out = new

 PrintWriter(connection.getOutputStream());
out.println("Hello from a Java app");
out.flush();

} catch (Exception e) {
e.printStackTrace();

}
}

Current Status & Summary

MA0Y & WMQ V7.0 – JEE Servlet-based HTTP Bridge

• Windows SupportPac (MA0Y) includes a bundled copy of WAS CE
• Pre-configured with samples
• Pre-configured with JCA
• Suitable for WMQ V6.0.2.1 onwards

MA94 – Standalone listener – no JEE pre-requisites
• Runs on Windows, Linux, AIX
• Ajax Samples, and Sample security exit

Benefits
• No client libraries required – use stand-alone or in a Browser
• Simple API mapping HTTP to MQ
• Low cost of entry

• develop in notepad, ad-hoc service descriptions / message formats

Limitations
• As (un)reliable as HTTP
• No transactional capabilities
• Subset of MQI

Current Status

• The feature is delivered in the (unsupported) Category 2
SupportPacs mentioned and the (supported) WMQ V7.0

• Longer term we intend to add a tightly integrated HTTP listener
and channels as a native part of WMQ

• Limitations
• REST is not good for everything – for instance event-based low latency systems

do not work well in the REST model (a separate ‘server-push’ API over HTTP is
under investigation to address that problem). REST is also silent on many of the
quality of service standards typified by WS-* like reliable messaging, duplicate
elimintion, end-to-end security etc. (but this contributes to it’s simplicity so can be
considered a plus point).

• Longer term
• Could become a new listener type integrated within the Qmgr - e.g.

• No application server pre-requisite – HTTP clients connect direct to MQ
• A new HTTP channel type and an HTTP listener
• No access by default, secured by exits

N

O

T

E

S

MQ Web Services Themes

2. Robust Async SOAP Transport

 SOAP / JMS Standard

 WMQ Channel for Windows
Communication Foundation

3. Managing WMQ Apps as Services

 WMQ Service Definitions
• .wsdl for WMQ Applications

1. Easy Access from Web Clients
 WebSphere MQ Bridge for HTTP

• Web Client side access to WMQ

 JSP/Servlets & "SAM" PHP API
• Web Server side access to WMQ

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

Part 1b – Web Server Access
JSP/Servlets

• Servlets
• Java class that outputs text, such as HTML
• Can run any Java code, such as JMS
• Code run on server, text returned to web client

• Java Server Pages (JSP)
• HTML-like document
• Tags to embed Java code, such as JMS
• JSP page compiled into Servlet
• Run on server, text returned to web client

• Both technologies part of JEE application servers
• For example, WebSphere Application Server
• Standalone web container servers available, such as Tomcat

JEE Server

MQ

JSP/Servlet

WebSphere MQ JMS

Web client/browser

HTTP Get/Post

JMS

Part 1b – Web Server Access
JSP/Servlets

• JSP
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Page Title</title></head>
<body>
<%

Connection conn = connectionFactory.createConnection();
%>
</body>
</html>

• Servlet
protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,
IOException {
…
response.getWriter().println(message.getText());

}

Part 1b – Web Server Access
Simple Asynchronous Messaging (SAM)

• Languages like PHP simplify creating dynamic web
pages
• They are not over engineered but good enough
• The languages and runtimes are largely open-source
• They are lightweight and require no tooling

• Aims of SAM:
• Develop a simplified

messaging API for PHP
• Can be used uniformly

across the WebSphere
messaging family

• Deliver as an open-
source extension

Web Server

Brokers

WMQ, WAS,

MicroBroker etc…

XMS

C API

SAM

Extension

PHP

EnginePHP

Scripts
HTTP

This is the SAM deliverable

SAM Home Page: http://project-
sam.awardspace.com

SAM – Simple Asynchronous Messaging

WebSphere MQ provides a number of messaging API to support the wide range of
messaging environments and requirements. This includes:

Message Queue Interface (MQI) - Fully functional low level API focussing on performance
and functionality in C, C++, Java, .NET, COBOL and PL/1
Java Message Service (JMS) - Support for Java in the J2EE environment.
Message Service Clients (XMS) - Extends the reach of JMS style messaging to the C, C+
+ and .NET languages

However, these do not provide an ideal match for integration with PHP or similar languages
where simplicity is the primary focus.

The SAM extension for PHP is a framework that provides a very simple API that can be
used uniformly across the range of WebSphere middleware messaging systems.

Currently the package includes built in support for MQTT (MQ Telemetry Transport) but can
also communicate with WebSphere Message Brokers, WebSphere MQ and WebSphere
Application Server through the use of additional pre-req software.

SAM is designed to be readily extended to support other messaging systems and extension
modules may be written in C or PHP.

N

O

T

E

S

API style – send and receive example

// Create a connection to a broker
$conn = new SAMConnection();
$conn->connect(SAM_WMQ, array(SAM_BROKER =>
‘MyQueueManager’));

 //Create a message
$msg = new SAMMessage(‘Simple text message’);

 // set a reply queue identity in the message header
$msg->header->SAM_REPLY_TO = ‘queue://receive-test’;

 //Send it and capture the correlation id that is returned…
$correlid = $conn->send(‘queue://send-test’, $msg);

 // receive the answer but only wait for 5 seconds
$answer = $conn->receive(‘queue://receive-test’,
 array(SAM_WAIT => 5000, SAM_CORRELID =>
$correlId));

API style –send and receive example

Demonstrates the script required for a typical send and receive operation (with error
handling removed for clarity).

A request message is sent to an WebSphere MQ queue destination. To enable the
application processing the message to route its response message back to us, a
reply destination is also specified in the request.

The receive call is then made, providing the correlation id of the sent message, this
ensures that we receive the correct reply for our request.

N

O

T

E

S

Architecture overview

SAM is provided as a PHP extension. Some optional pre-reqs are also required depending
which messaging server is being used. These are as follows:

WebSphere Message Brokers - MQ Telemetry Transport (MQTT) protocol:

- No additional software.

WebSphere Message Brokers - Realtime Transport (RTT) protocol:

- IBM Message Service Client for C/C++ (XMS C/C++)

WebSphere MQ – Client or bindings connections

- IBM Message Service Client for C/C++ (XMS C/C++)

- IBM WebSphere MQ (a local queue manager or clients package)

WebSphere Application Server

- IBM Message Service Client for C/C++ (XMS C/C++)

N

O

T

E

S

Interested in taking a look?

• Downloads

• Available for PHP 4 and 5

• Source available from PECL: http://pecl.php.net/package/SAM
• Binaries (limited binaries available for Windows from the SAM

home page)

• Latest Version: 1.1.0

• Further info
• SAM Home Page: http://project-sam.awardspace.com
• Google Group: http://groups.google.co.uk/group/phpsam

….Feedback welcome

MQ Web Services Themes

2. Robust Async SOAP Transport
 SOAP over JMS Standard

 WMQ Channel for Windows
Communication Foundation

3. Managing WMQ Apps as Services

 WMQ Service Definitions
• .wsdl for WMQ Applications

1. Easy Access from Web Clients
 WebSphere MQ Bridge for HTTP

• Web Client side access to WMQ

 JSP/Servlets & "SAM" PHP API
• Web Server side access to WMQ

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

Part 2a - WMQ SOAP Transport Feature

• WMQ is an ideal transport for WS-* Web services
• Offers enhanced qualities of service compared with Web services over

HTTP, e.g.:
• Asynchronous invocation – decoupled in time, multi-hop, reroute responses

• Queuing offers more reliable scaling characteristics

• Better manageability – more tangible messages
• Use MQ infrastructure, track messages, find bottlenecks etc.

• WMQ includes a ‘SOAP Transport’ feature
• Enables WMQ to carry WS requests as a pluggable replacement for HTTP.
• Made available in WMQ v5.3 as SupportPac MA0R - “MQ Transport for SOAP”
• Fully integrated into product in WMQ v6.0

• IBM interoperable way of carrying SOAP messages in WMQ
• Enables SOAP requests to be interpreted by IBM products WAS, CICS

• Named ‘SOAP over JMS’ specifies how SOAP message is carried as the payload of a
JMS message

Part 2 - WMQ SOAP Transport Feature

WMQ offers a number of advantages over HTTP as a web services transport
• The first advantage is in improved scalabilty for birectional data exchanges. HTTP

Caches offer amazing scalability when data is static, but are no use for scaling unique
req/resp. and HTTP infrastructures need to be designed to be able to handle the peak
number of concurrent requests. Queues are inherently better at variable workloads.

• The second advantage is manageability
• WMQ / JMS messages are more tangible and traceable than HTTP requests

• The third advantage is asynchrony
• Limited (short term) async has existed in .NET for some time, and it has been

added to Java JAX-WS. This does not offer any guidance on how to persist
and correlate requests over a long time. True queued async adds resilience –
(both parties don’t need to be running at the same time), and requests can be
longer running than typical HTTP request.

• To allow exploitation of WMQ as a SOAP transport, WMQ has been offering SOAP/JMS
support since v5.3 with SupportPac MA0R.
See SupportPacs site for download…

• http://www-1.ibm.com/support/docview.wss?rs=171&q1=mA1J&uid=swg24006280&loc=en_US&cs=utf-
8&lang=en

• This SupportPac allows services to be created and deployed to MQ – so MQ can be used as a
service hosting environment, but we expect most services in production to be hosted in other –
more functional managed environments like CICS or WAS.

• The most important thing about this SupportPac is that it defined a standard way for carrying
SOAP service invocations over MQ – thus ensuring interoperability between CICS, MQ, and
WAS.

• Any message format could have been chosen, but JMS fits in best for compatibility with WAS.

N

O

T

E

S

http://www-1.ibm.com/support/docview.wss?rs=171&q1=mA1J&uid=swg24006280&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=171&q1=mA1J&uid=swg24006280&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=171&q1=mA1J&uid=swg24006280&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=171&q1=mA1J&uid=swg24006280&loc=en_US&cs=utf-8&lang=en

SOAP Transport for WMQ - Architecture

client
app

Typical Deployment of Web Service using HTTP

WMQ
SOAP

Listener

SOAP
Layer

target
object

WMQ

Web Service Client Web Service

HTTP
HTTP
server

HTTP

Deployment of Web Service using WMQ
• Directly interchangeable with HTTP for supported SOAP Layers
• Message sent using ‘SOAP over JMS’ format

• JMSBytes or JMSText message types (with RFH2 etc.) with SOAP request
carried as message payload.

• Additional properties (e.g. ‘SOAPAction’) carried in JMS message props.

• Services accessed using JMS URI

• URI of form ‘jms:queueName…’

• Options to control other WMQ details such as queue manager, persistence etc

WMQ
JMS

SOAP
Layer

target
object

client
app

SOAP
Layer

WMQ
SOAP
Sender

SOAP
Layer

WMQ
JMS

SOAP Transport for WMQ - Interops

WMQ

CICS

WAS

Axis
SOAP
Layer

Web
Service

Axis 1
(Java)

 Environments which currently support using WMQ as a SOAP transport

.wsdl

.NET 1,2
(.asmx) +
WCF

jms:/queue?destination=myQ…

WMQ
SOAP/JMS

.NET
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

WAS
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

CICS
SOAP
Layer

Web
Service

WMQ
SOAP/JMSCICS

WAS

Axis 1
(Java)

.NET 1,2
(.asmx) +
WCF

CICS
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

WAS
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

.NET
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

Axis
SOAP
Layer

Web
Service

WMQ
SOAP/JMS

SOAP Transport for WMQ - Interops

• SOAP/JMS shipped in WMQ v6
• Scripts allow Java or .NET objects to be deployed as a SOAP/JMS web service over MQ

• Utilities generate WSDL, client proxies, Request & Response Queues
etc.

• A WMQ Web service is identified by URI prefix “jms:” E.g.
• jms:/queue?destination=myQ&connectionFactory=()&targetService=myService

&initialContextFactory=com.ibm.mq.jms.Nojndi

• Client applications call SOAP/JMS services as if they are HTTP services - using generated proxy code

• One additional line of code is required to register the “jms” extension
• Java : com.ibm.mq.soap.Register.extension ();
• C# : IBM.WMQSOAP.Register.Extension();
• Visual Basic : IBM.WMQSOAP.Register.Extension()

• On the Server – a new MQ SOAP/Listener process

• waits for messages to arrive on the Q
• Hands off the request to the appropriate SOAP stack (.NET or Axis 1)
• The SOAP stack de-martials the SOAP, invokes the service, and queues

the response
• Interoperates with WAS and CICS SOAP/JMS implementations allowing

• MQ services to be called from WAS, or CICS
• WAS or CICS services to be called using MQ as the transport

N

O

T

E

S

SOAP Transport for WMQ–Vendor Interops

• Different vendors implementations do not interoperate
• Each vendor has their own SOAP/JMS implementation
• Progress, TIBCO, Oracle, Axis…

• Interoperability is required
• Web services and clients hosted on different vendors J2EE

Application Servers should interoperate.
• Vendor solutions can not interoperate on the wire (JMS is a

standard API but not a standard wire format)
• …should be able to interoperate at the JMS API level

IBM WASOracle WebLogic

WAS
SOAP
Layer

Web
Service

WMQ
JMS

Oracle
SOAP
Layer

Web
Client

Oracle
JMS

client
app

WAS
SOAP/
JMS

WAS
SOAP
Layer

target
object

WMQ
WMQ
JMS

Oracle
SOAP/
JMS

Oracle
SOAP
Layer

WMQ
JMS

IBM WASOracle WebLogic

SOAP/JMS – Vendor Interoperability

• A number of other vendors have also implemented SOAP/JMS in their
Applications Servers, ESB’s, etc.

• Customers have heterogeneous environments
• For example using MQ as the JMS provider for BEA Weblogic
• Using a mixture of WAS and other application servers

• …and would like interoperability when invoking services using SOAP over
JMS

• E.g. Consuming a service deployed in in WAS or CICS from a client running in BEA
WebLogic

• Different vendor JMS solutions can not interoperate on the wire
(because JMS is a standard API but not a standard wire format),
but if

• Ideally it should be possible for different SOAP/JMS implementations to
interoperate.
• Sonic, TIBCO, BEA, Axis

• …but should be able to interoperate at the API level – e.g. WAS ->
WebLogic

N

O

T

E

S

SOAP/JMS Standardisation

• A SOAP/JMS standardisation effort is underway
• W3C SOAP-JMS Binding Working Group:

http://www.w3.org/2002/ws/soapjms/
• Participants include IBM, Oracle (BEA), TIBCO, WSO2, Progress, Software

AG, Sun, Cisco
• In “Candidate Recommendation” stage – hopes to finalise in 2010

• Awaiting two interoperable implementations before completion
• Already implemented in WAS 7

• Standardisation will make it possible to have:
• JMS provider-neutral deployment of SOAP/JMS services

• Bidirectional HTTP - SOAP Bridging
• Maintaining integrity of SOAP message and protocol metadata

SOAP/JMS Standardisation

• A SOAP/JMS standardisation effort between IBM, BEA, Sonic, and TIBCO
has been underway for some time. In Oct ’06 the specifications reached v1.0
RC1 and were distributed to five more vendors and various customers for
feedback. WebMethods subsequently joined the core team.

• http://mail-archives.apache.org/mod_mbox/ws-axis-dev/200701.mbox/
%3c80A43FC052CE3949A327527DCD5D6B27020FB65C@MAIL01.bedford.progress.com%3e

• Standardisation will make it possible to mix and match JMS providers and
SOAP transport handlers, and will allow HTTP SOAP requests to be bridged
to Message oriented middleware transports without losing metadata like
SOAPAction

• There is growing interest in this standard – for instance at a recent W3C
workshop (http://www.w3.org/2006/10/wos-ec-cfp.html) standardisation of
SOAP/JMS was the feature most requested by the participants

• Standardisation will be a step towards WS transport independence –
something which so far has been lacking in WS-* - an issue identified by Paul
Downey in his - BT Position Paper “Services on the Web and Web Services”
“Description of Transports
In spite of Web services advocating transport independence, there are currently no well supported means
to describe the WSDL endpoint for many commonly used paths such as IBM MQSeries or Sonic MQ,
which are often abstracted using the Java Messaging Service (JMS). This is quite baffling, given how
many of these transports are under the direct control of individual companies who advocate Web
services.” http://www.w3.org/2007/01/wos-papers/bt

N

O

T

E

S

http://mail-archives.apache.org/mod_mbox/ws-axis-dev/200701.mbox/%3C80A43FC052CE3949A327527DCD5D6B27020FB65C@MAIL01.bedford.progress.com%3E
http://mail-archives.apache.org/mod_mbox/ws-axis-dev/200701.mbox/%3C80A43FC052CE3949A327527DCD5D6B27020FB65C@MAIL01.bedford.progress.com%3E
http://www.w3.org/2006/10/wos-ec-cfp.html
http://www.w3.org/2006/10/wos-ec-cfp.html

SOAP/JMS Specification Details

Based on IBM SOAP/JMS but some minor differences

Consists of 2 specification documents
1. SOAP Binding Specification

• Message Format (BytesMessage)
• Properties that MUST / SHOULD flow in JMS messages
• SOAP/JMS WSDL bindings
• Request / Response & One-Way MEP State Machines

• Member submission Submitted to W3C -
http://www.w3.org/Submission/2007/05/Comment

2. URI Scheme Specification – jms:
• “Internationalized Resource Identifier” (updated version of URI - RFC3987)
• e.g. jms:news?targetService=current-affairs &connectionFactory=SOAPJMSFactory

&deliveryMode=2 &priority=8 replyToName=interested

• The scheme is under review on the IETF review list:
http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-
01.txt

• SOAP/JMS enables interoperable access to services over MQ
• It isn’t restricted to Java (e.g. .NET support in MQ v6)

• Non-Java Applications can construct JMS messages to invoke services
• MQ JMS message formats are all published, so e.g. COBOL apps can build JMS messages

N

O

T

E

S

http://www.w3.org/Submission/2007/05/Comment
http://www.w3.org/Submission/2007/05/Comment
http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-01.txt
http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-01.txt
http://www.ietf.org/internet-drafts/draft-merrick-jms-uri-01.txt

SOAP/JMS Specification Details

The SOAP/JMS standard is being delivered in 2 specifications.
1. The SOAP Binding Specification which defines how JMS messages should be constructed. This

specifies the message type which should be used (BytesMessage), and the properties that MUST or
SHOULD flow in JMS service invocation messages. It also specifies how to describe a SOAP/JMS
service in WSDL bindings, and defines State Machines for the supported Message Exchange Patterns
(Request / Response and One-Way).

• Now submitted to W3C who have proposed a Working Group be chartered
2. The SOAP/JMS IRI Scheme defines the syntax of the jms: IRI (an “Internationalized Resource Identifier”

is a address (URI) which can support internationalised character sets as defined in RFC3987)
• Submitted to IETF URI review list: http://www1.ietf.org/mail-archive/web/uri-

review/current/index.html

• Inevitably there are some slight differences between the IBM SOAP/JMS support
implemented in WMQ v6, and the standardised version of SOAP/JMS.

• These are diffences in the IRI and the message formats

• Once the SOAP/JMS standard has been published, IBM products will need enhancements to
implement the standard

• It’s important to note that, despite its’ name, the SOAP/JMS specification
is not restricted to Java and JMS. It enables interoperable access to
services over MQ from and to any languages

• Because MQ JMS message formats are all published, non-Java Applications can construct
JMS messages to invoke services by building the correct RFH2 headers

• e.g. COBOL apps building JMS messages, .NET support in v6

N

O

T

E

S

http://www1.ietf.org/mail-archive/web/uri-review/current/index.html
http://www1.ietf.org/mail-archive/web/uri-review/current/index.html
http://www1.ietf.org/mail-archive/web/uri-review/current/index.html

Part 2b - WCF Custom channel for MQ

• Windows Communication Foundation (WCF) underpins
Web services and Messaging in .NET 3

• Built-in Transports e.g. MSMQ, HTTP(S), Named Pipes,
TCP/IP, etc.

• Transports can be extended with ‘custom channels’

• Allows alternative transports (like MQ) to be slotted into WCF
seamlessly

• IBM has now released a custom channel for MQ
• Initially released on AlphaWorks June 2007
• Now available in WMQ v7.0.1
• Uses IBM SOAP/JMS message formats

• For interoperability with WAS, CICS SOAP/JMS services

WCF Architecture

• Primary focus of WCF is for service orientated architectures

• Simplifies integration by separating the roles of transporting and
encoding data
• Transport channels (HTTP, TCP/IP…)
• Message encoders (Binary, XML,SOAP, MTOM…)
• Protocols (WS-*…)

• WMQ is integrated as a transport channel

Q

WMQ

Message
Encoder

WMQ
Transport

Protocols..

WCF Client
Application

WCF Channel Stack

WCF Services Layer

Message
Encoder

WMQ
Transport

Protocols..

WCF Service
Application

WCF Channel Stack

WCF Services Layer

WCF Architecture

WCF Custom Channel for WMQ

XMS .NET

NMQI (used to be WMQ .NET Base Classes)

local MQ
bindings

MQ Queue Manager

.NET
managed client
connections

3

2

1

MQ client
.NET
unmanaged
connections

Usage Pattern 1

• Interface to web services hosted over WMQ (SOAP/JMS)

Message
Encoder

WMQ
Transport

Protocols..

WCF
Application

WMQ

WCF Channel Stack

WMQ
SOAP/JMS

SOAP
Layer

Web
Service CICS

WMQ
SOAP/JMS

SOAP
Layer

Web
Service

WAS

WMQ
SOAP/JMS

SOAP
Layer

Web
Service

Axis (Java)

 Extending to other application servers with adoption of W3C
SOAP/JMS
 standard (BEA, Sonic, TIBCO, Axis)

.wsdl

WCF Services Layer

.NET 1/2 (.asmx)*WMQ
SOAP/JMS

SOAP
Layer

Web
Service

jms:/queue?destination=myQ…

Usage Pattern 2

• Interface to native WMQ applications which are described
as services
• WMQ Service Definition

WMQ

Native
WMQ

Application

.wsdl

WMQ Service Definition

Message
Encoder

WMQ
Transport

Protocols..

WCF
Application

WCF Channel Stack

WCF Services Layer

wmq:/msg/queue/myQ?priority=4&…

Usage Pattern 3

• As a standalone messaging API
• CreateChannel(), Send(), Receive().

• WCF Channel stack used directly by applications (not through
the services layer)

• Likely to require an additional message encoder

Message
Encoder

WMQ
Transport

Protocols..

WCF
Application

WMQ

WCF Channel Stack

Native
WMQ

Application

WCF Custom channel

• The work IBM is doing on using MQ for the Windows Communication
Foundation is an example of how SOAP/JMS can be used outside Java

• The Windows Communication Foundation (aka Indigo)
provides the core for all .NET connectivity

• Available for Windows XP
• An integral part of Vista

• Microsoft supply a number of built-in transports
• MSMQ, HTTP(S), Named Pipes, TCP/IP, etc.
• Can be used with .NET bindings to invoke .NET services
• Or with SOAP bindings for interoperability with other services
• The communication framework is extensible

• We have requirements to provide a WMQ transport for WCF
• Allowing seamless WMQ integration in Windows

• This will allow .NET to .NET communication using WMQ as a Web
services transport, and, because it uses the SOAP/JMS message formats
and IRI, it will also allow WCF applications to communicate with
SOAP/JMS services deployed to CICS, WAS etc.

N

O

T

E

S

http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx

WCF Custom channel Features & Status

• Available in WMQ 7.0.1
• Features :

• Can call a service using One-Way (Fire and forget) and
Request-Reply MEPS

• SOAP/JMS or POX messages
• Samples for:

• Calling Request-Response, and One-way WCF services
• Calling a sample Axis service hosted by WMQ v6
• Calling a sample .NET service hosted by WMQ v6
• Calling a sample service hosted in WAS

• Dependencies

• .NET Framework v3 or 3.5 runtime & SDK
• Limitations:

• Does not support distributed transactions

MQ Web Services Themes

2. Robust Async SOAP Transport

 SOAP / JMS Standard

 WMQ Channel for Windows
Communication Foundation

3. Managing WMQ Apps as Services

 WMQ Service Definitions
• .wsdl for WMQ Applications

1. Easy Access from Web Clients
 WebSphere MQ Bridge for HTTP

• Web Client side access to WMQ

 JSP/Servlets & "SAM" PHP API
• Web Server side access to WMQ

WebSphere MQ
Enterprise Messaging Backbone

Web 2.0
REST, AJAX, JSON

Reusing and Governing MQ Applications

• Requirement for a standard to describe MQ apps as SOA assets

• Allowing stand-alone WMQ applications to be described as
services:

• To be inventoried, and catalogued in Service Registry
• To be re-used as services in composite SOA applications
• To be managed and traced with SOA tools

• IBM has specified the MQ Service Definition and SOAP binding

• URI for MQ Queues and Topics (“wmq:”)
• WSDL bindings
• Defines applications properties, and where and how to send

messages
• E.g. the Message Exchange Pattern; Request queue; Response

queue; Correlation style; Message format; Message persistence,
priority etc.

• This is a published specification

• WMQ SupportPac MA93
• It defines the standard to be implemented by IBM and other

vendor tools

http://www-1.ibm.com/support/docview.wss?uid=swg24017518
http://www-1.ibm.com/support/docview.wss?uid=swg24017518
http://www-1.ibm.com/support/docview.wss?uid=swg24017518
http://www-1.ibm.com/support/docview.wss?uid=swg24017518

WMQ Service Descriptions

• MQ users have requested guidance from IBM on how they should describe their MQ applications as services for use in service
oriented architectures.

• There has been particular interest in applying this to unmanaged native WMQ applications (i.e. those coded to the MQI - not JMS -
and those running outside of an application server / CICS etc.)

• This will allow applications to:
• Be inventoried, and catalogued in Service Registry. For example, the WSDL description of an application can be

stored in WSRR
• Be managed and traced with SOA tools. which - for example – will be able to monitor the queues associated with a

service
• Be re-used in composite applications. For example, once the MQ service definition has been implemented by web

services tools, it will be possible to drop an MQ application into a composite Web services application, and the tools
will generate the code required to invoke the MQ application

• IBM has creating the MQ service definition specification to address this
• This consists of two documents.

• An IRI specification, which defines :
• The address of a WMQ message destinations i.e. Queues or Topics for use by messaging applications
• The address of other WMQ resources i.e. Qmgrs, Queues, channels, channel status etc. for use by admin tools

• A Bindings Specification, which defines :
• Properties which may be used to describe and connect to a WMQ app.
• The mapping of properties to message headers for the construction and interpretation of SOAP and non-SOAP messages
• Supported message exchange patterns
• A WSDL binding for SOAP/WMQ and non-SOAP/WMQ
• Examples of IRIs, Messages, and WSDL documents

• This is published in SupportPac MA94
• No immediate plans to add tooling support in the base MQ product, but it will provides a standard to be implemented

by IBM and vendor tooling products
• Expect this to be picked up first by Message Broker and WebSphere Service Registry and Repository

N

O

T

E

S

Why use WMQ service definitions?

• Catalogue MQ applications existing within your organisation
• Increase application re-use
• Reduce the effort required to manage and govern MQ

applications and resources
• Identify which resources your MQ applications are using

• Who will be affected if I:
• Delete a queue?
• Shutdown a queue manager?

Using WMQ service definitions

<wsdl>
<mq>

</wsdl>

<wsdl>
<mq>

</wsdl>
<wsdl>

<mq>
</wsdl>

<wsdl>
<mq>

</wsdl>
<wsdl>

<mq>
</wsdl>

<wsdl>
<mq>

</wsdl>

Architect

Writes service
definitions

Repository

Application Developer

Looks up existing services,
connection details etc. to develop
new applications

Runtime Clients & Message
Broker Flows

Look up connection details at
runtime, allowing services to
be re-located without re-
writing client apps

Integration Administrator

Manages existing applications,
performs impact analysis,
generates application statistics etc.

MB Flow

Service Developer

Writes services based on
service definitions

Notes

N

O

T

E

S

•Service definitions provide a centralised point which can be used to decouple all aspects of the software development lifecycle.
•Typically, this would start with the architect developing a set of interface definitions for the services needed to meet a particular
requirement.
•These would then be picked up by the development team to provide an implementation. In parallel, the application developer,
can start to bring the together the individual services into a composite application based on the published interface information
and endpoint/connection details. This could be by using high level tooling to create process flows, such as WebSphere
Message Broker, or more directly into Java/.NET applications.
•In more advanced scenario, the binding of services into the composite application could be performed at runtime, where for
example, WebSphere Message Broker could be used to look up the endpoint information at runtime to determine which
instance of a service to bind to – providing a greater level of flexibility and agility in managing systems.
•The final aspect is then the monitoring and control that can take place. By using the published data, impact analysis can be
performed, such as what services would be effected if I took this server out for maintenance. Statistics can also be collected to
help with monitoring utilisation, performance or accounting.
•The WMQ service definition enables WMQ applications to be managed in exactly the same way as any other service above.

WebSphere MQ Explorer Service Definitions

Service Definition Wizard

Enter queue
name, queue
manager details
etc.

Notes

N

O

T

E

S

• Service Definition feature available with WebSphere MQ
Explorer since WMQ v7.0.0.1

• Provides a wizard which allows you to generate WMQ service
definition WSDLs describing one-way and request-reply services

• WSDLs produced can be consumed by WebSphere Service
Registry and Repository 6.2.0.2

• Precludes the user from having to know anything about WSDL

Example – Native WMQ Request-Response MEP
(WSDL)

<definitions ... xmlns:wmqservice="http://www.ibm.com/2007/02/service/bindings/WMQ/">

 <!–- Message and portType definitions are all standard WSDL -->

 <!– Binding – WMQ Native-->

 <binding name="mq_insurance_bindings" type=“tns:portType1">

 <wmqservice:binding/>

 <operation name=“getQuote">

 <input>

 <wmqservice:body/>

 </input>

 <output>

 <wmqservice:body/>

 </output>

 </operation>

 </binding>

 <service name=“InsuranceServices">

 <port name=“mq_ports" binding=“tns:mq_insurance_bindings">

 <wmqservice:address location=" wmq:/msg/queue/INS.QUOTE.REQUEST"/>

 <wmqservice:persistence>MQPER_NON_PERSISTENT</wmqservice:persistence>

 <wmqservice:format>MQSTR</wmqservice:format>

 <wmqservice:reportOptions>MQRO_PASS_MSG_ID</wmqservice:reportOptions>

 <wmqservice:replyTo>msg/queue/INS.QUOTE.REPLY</wmqservice:replyTo>

 </port>

 </service>

</definitions>

 2

 1

 3

Example – Native WMQ Request-Response MEP
(WSDL)

• This example shows a native MQ request/response application which processes an insurance quote
request and place a response on a reply queue

• The service Interface (portType) and Message definitions are not shown in this example because the MQ
Service Definition specification does not extend or change WSDL's intrinsic XML Schema-based type
system.

• Note, this means that WMQ messages encoded in non-XML data – e.g. COBOL copybooks – must be described in
WSDL using XML schema. A standard set of schema annotations and rules - called Data Format Description
Language (DFDL) - is being developed to extend XML schema to non-XML formats and should be used once ratified,
but until it is ratified, proprietary schema annotation can be used – (e.g. the ones used by WebSphere Message
Broker).

• Looking at the WSDL in more detail:
• The service definition (1) contains the addresses of the request queue

(wmq:/msg/queue/INS.QUOTE.REQUEST) and response queue (msg/queue/INS.QUOTE.REPLY) and defines the
bindings to use (mq_insurance_bindings). The bindings section (2) is identified as an MQ transport binding
by the presence of the <wmqservice:binding/> element. It specifies that the application must be
accessed using the qualities of service defined by the elements shown in (3) – i.e. Persistent messages,
with an MQ String format. It also specifies that the responding MQ Service Application correlates the
response message to the request message by copying the request MsgId into the Response MsgId
(MQRO_PASS_MSG_ID)

• The Application can either be described using the WSDL shown on the previous page, or alternatively it
can be completely described using the following IRI.

wmq:/msg/queue/INS.QUOTE.REQUEST?
 &replyTo=msg/queue/INS.QUOTE.REPLY
 &format=MQSTR
 &persistence=MQPER_NON_PERSISTENT
 &reportOptions=MQRO_PASS_MSG_ID

• The IRI definition is a more compact version of the WSDL definition, but they are equivalent.
• The presence of the replyTo parameter tells the invoking implementation to expect a response (In the IRI

this MEP could also be indicated by a “msgType=MQMT_REQUEST” parameter, in which case the
replyTo parameter could be omitted and the implementation would be expected to provide information
about the replyTo destination – perhaps by using a temporary queue)

• The format and persistence parameters specify that the messages are non-persistent text messages.
• The reportOptions parameter specifies that the responding application should set the messageID of the

response to the messageID of the request message (in addition to the default behaviour of copying the
request messageId to the correlId of the response).

N

O

T

E

S

http://forge.gridforum.org/sf/projects/dfdl-wg
http://forge.gridforum.org/sf/projects/dfdl-wg
http://forge.gridforum.org/sf/projects/dfdl-wg

Impact Analysis for INS.HOUSE.QM

Impact Analysis

N

O

T

E

S

By defining MQ applications as services using a standard
WSDL spec, it is possible to view the dependencies between
abstract services and concrete components of your
infrastructure

 - Which queues does a given service depend on?
 - Which services are hosted by a particular queue manager?

These are difficult questions to answer if applications aren’t
described and catalogued in a consistent manner

Summary – MQ, the Web, and Web Services

• MQ can be used as a Web 2.0 enabler

• Extending the reach of Enterprise applications to the Web
• MQ HTTP can be used for “Zero Footprint Clients”

• Server, Client , and Device applications can communicate over HTTP
• No need to deploy client libraries
• Extends MQ to many more client environments

• MQ can be used as a Web services transport

• Using SOAP over JMS standard, or by sending SOAP messages in raw MQ
messages

• As a integrated custom channel in the Windows Communication Foundation
• WMQ based applications can be described and re-used in Service Oriented

Architectures

• Describe WMQ applications in a standard way like other Web service assets
using WSDL and IRI’s

• Store in Service Registry, and use tools to access

Copyright and Trademarks

© IBM Corporation 2011. All rights reserved. IBM, the
IBM logo, ibm.com and the globe design are
trademarks of International Business Machines
Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.
Other company, product, or service names may be
trademarks or service marks of others.

file:///home/sgormley/Orlando/To Be Uploaded/E:\..\..\..\..\..\..\Documents and Settings\Administrator\Local Settings\Temp\notesEA312D\www.ibm.com\legal\copytrade.shtml
file:///home/sgormley/Orlando/To Be Uploaded/E:\..\..\..\..\..\..\Documents and Settings\Administrator\Local Settings\Temp\notesEA312D\www.ibm.com\legal\copytrade.shtml

	More than a Buzzword: Extending the Reach of Your MQ Messaging with Web 2.0
	Introduction: Extending the Reach of Applications Using WMQ
	Extending the Reach of Applications Using MQ
	WMQ Web Services Themes
	MQ Web Services Themes
	MQ Web Services Themes
	Slide 7
	Part 1a – Web Client Access MQ-HTTP Bridge
	HTTP-MQ Goals
	Slide 10
	Architectural Overview
	Background – HTTP-MQ Loosely Modelled on REST
	Slide 13
	HTTP-MQ API: Verb / Resource Mapping
	HTTP-MQ Verb / Resource Mapping
	Deconstructed HTTP Flow - POST (= MQPUT)
	Slide 17
	Deconstructed HTTP Flow - DELETE (=MQGET)
	JavaScript XHR Example: Web Page to put a message
	Java Example: Method to PUT a message over HTTP
	Current Status & Summary
	Current Status
	Slide 23
	Part 1b – Web Server Access JSP/Servlets
	Slide 25
	Part 1b – Web Server Access Simple Asynchronous Messaging (SAM)
	SAM – Simple Asynchronous Messaging
	API style – send and receive example
	API style –send and receive example
	Architecture overview
	Interested in taking a look?
	Slide 32
	Part 2a - WMQ SOAP Transport Feature
	Part 2 - WMQ SOAP Transport Feature
	SOAP Transport for WMQ - Architecture
	SOAP Transport for WMQ - Interops
	Slide 37
	SOAP Transport for WMQ–Vendor Interops
	SOAP/JMS – Vendor Interoperability
	SOAP/JMS Standardisation
	Slide 41
	SOAP/JMS Specification Details
	Slide 43
	Part 2b - WCF Custom channel for MQ
	WCF Architecture
	Slide 46
	Usage Pattern 1
	Usage Pattern 2
	Usage Pattern 3
	WCF Custom channel
	WCF Custom channel Features & Status
	Slide 52
	Reusing and Governing MQ Applications
	WMQ Service Descriptions
	Why use WMQ service definitions?
	Using WMQ service definitions
	Notes
	WebSphere MQ Explorer Service Definitions
	Service Definition Wizard
	Slide 60
	Example – Native WMQ Request-Response MEP (WSDL)
	Slide 62
	Impact Analysis for INS.HOUSE.QM
	Impact Analysis
	Summary – MQ, the Web, and Web Services
	Copyright and Trademarks

